CraftBandSquare45 を使って、3つ飛びで、四方網代編みおよび長桝網代編みの底編み図を生成する手順ができました。
この時、いちばん迷うのは、[縦横の四角]の「垂直に」「底に」に何を設定するかでしょう。3回試行すればいいだけなのですが、わかっていれば1回で作れます。なので、早見表を作ってみました。
PDFファイルです。
CraftBandSquare45 を使って、3つ飛びで、四方網代編みおよび長桝網代編みの底編み図を生成する手順ができました。
この時、いちばん迷うのは、[縦横の四角]の「垂直に」「底に」に何を設定するかでしょう。3回試行すればいいだけなのですが、わかっていれば1回で作れます。なので、早見表を作ってみました。
PDFファイルです。
正方形は、長方形の特殊ケースです。つまり、長方形としての(角が直角などの)条件を全て満たしており、更に、縦と横が等しいという条件が加わったものです。
底を縦横に組んで45度に立ち上げるタイプのかごで使われる、四方網代編みと長桝網代編み。正方形の時に使われるのは四方網代編み、長方形で使われるのは長桝網代編みです。
では、同様に、四方網代編みは長桝網代編みの特殊ケースなのでしょうか。
特徴をリストアップしてみましょう。
四方網代編み | 長桝網代編み |
---|---|
飛び数は、1,2,3 | 飛び数は、1,3,5 |
3つ飛びの並びに不連続箇所がある | 3つ飛びは連続している |
全く違っています。別の編み方、と言うべきでしょう。
では、正方形のかごを長桝網代編みで作れるでしょうか。横の四角数 < 縦の四角数 ではなく、横の四角数 = 縦の四角数 なら?
やってみました。編み図の生成手順通りの操作で、作ることができました。長桝網代編みは、正方形を含む長方形で使えるのです。
底は長方形模様です。
先に作った、四方網代編みと同サイズです。
長桝網代編みの方が汎用性があるのに、なぜわざわざ四方網代編みなのでしょうか。
四方網代編みは、3本ごとに4のひもが交差する箇所が出てきて、詰めにくいしすき間も空きやすい。長桝網代編みの方が圧倒的に編みやすいのに、です。
4方向に模様が揃っていてキレイだから?正方形らしいから?
こう考えてしまうのは、もしかして、私の作り方のせいでしょうか。
私の作り方はこうです。下手な素人ですから、完璧は求めません。
ちなみに、3.のカットしながら、ですが、例えば4本幅で段階的に短くなっていく箇所だと、長さ+αくらいを割いておいて、次のように3本ずつ貼っていけばOK。
型紙に合わせていますので、作りながら固定します。後から、歪みを直したり直角に合わせるとかはしません。
そして、この手順だと、長桝網代編みも四方網代編みも作り方は同じです。
4.で、並んだ縦ひもに、横ひもを差していくとき、四方網代編みは3本ごとに無理が出てくるので、毎回柔らかくして詰めてボンドで留めるのですが、長桝網代編みには無理がない。霧吹き無しでできるし、手間がかからないのです。
先の文献『かごと器の技法がわかる 竹細工 増補改訂版』田中瑞波、メイツ出版、2023 では、長桝網代編みと四方網代編みは、章が違い、手順も異なります。長桝網代編みの手順はこんな感じです。
難しいです。。長桝網代編みの編み目の上下46×46を読み取りたくて、最初は手順に従って拾っていったのです。46本の真ん中22×24、その左上7だと(13,22)~(20,22)などと換算しながら。でも、3回、回転が出てきた段階でギブアップしました。方向音痴の私には無理でした。
この手順で長桝網代編みを作れと言われたら、私には無理です。不可能です。四方網代編みの方がまだマシです。….だから、四方網代編み、なのでしょうか。
データです。
CraftBandSquare45の機能を使って、四方網代編みの編み図を生成したように、長桝網代編みについても編み図を生成してみましょう。
条件に従うと、長辺に沿って3つ飛びで埋める組み合わせは以下でした。
上の四角・下の四角・中の四角を作る組み合わせについては、四方網代編みと同じです。
3つ飛びの長桝網代編みにするためには、先にみたように、線で切り替えられた模様を、連続した長方形の入れ子に書き換える、という手順が加わります。
また、上下による方向については、同様に最初から指定するか、もしくは[上下交換]で入れ替えることとします。
6.7.のBefore/Afterの例です。上ではいったんDeleteしていますが、そのまま「チェックONのセルの並びが1/3/5」「チェックOFFのセルの並びが1/3/5」になるよう、出来るだけ少なくON/OFFを入れ替える、という脳トレも楽しいです。
動画内で参照している「早見表」はこちらにあります。
長桝網代編みの横の(小さい方の)四角数については、
ということがわかりました。
次は、縦の(大きい方の)四角数です。この数については、いくつでも良さそうです。
試しに、横の四角数を14としてすべて同じにし、縦の四角数を32~15の間で少しづつ変えた絵を作ってみました。
絵を並べてみると、それぞれの底が、2つの部分で出来ているのが読み取れるでしょうか。この2つの部分についてまとめたのが下の表です。
呼び名 | 表示と形状 | 編み目 | 縦の四角数(32~15)との関係 |
---|---|---|---|
角(かど)にかからない中央部分 | 黒の点線(角丸四角)で囲まれた中、平行四辺形 | 3つ飛び網代編みが平行に並ぶ | 高さは、すべて同じ 幅は、縦マイナス横 |
角(かど)の三角形部分 | 黒の点線の外側、左側と右側、各二等辺三角形 | (上図は仮・次節で説明) | すべて同じ |
表の「縦の四角数(32~15)との関係」欄にまとめていますが、横の四角数が同じであれば「角にかからない中央部分」の高さ、および「角の三角形部分」の形状は、縦の四角数によらず同じです。縦の四角数の影響を受けるのは「角にかからない中央部分」の幅だけです。
「角にかからない中央部分」の幅は、縦の四角数から横の四角数をマイナスした数です。そしてこの幅の値は、いくつにでも作ることができます。ということは、縦の四角数も、いくつにでも作れる、ということです。横の四角数で決まる三角形部分とは無関係に。
そして最後に、残りの「角の三角形部分」を見てみましょう。上の図ではまだ仮の絵で、横の四角数によって決まる立ち上げ位置(上の四角/中の四角/下の四角)だけが合っている状態です。これを、「長桝網代編み」の
のように作れるのでしょうか。
以下の図は、上図の右から2点目、14×20の図です。赤の中央線のところに不連続な並びがありますが、三角の内側(角側)2本分をグレーの帯でマスクしてみました(元がわかるよう少し透過性を持たせています)。
マスクされた状態で全体を眺めてみると、つながった、入れ子の長方形が見えてきませんか?それに、ベースが3で出来ていますから、1,3,5でつながりそう、ですよね。
つながりのちょっとした入れ替え、マッチ棒クイズみたいだと思いませんか?
長方形の底で、長方形が入れ子に重なっている長桝網代編み、今まで作ったのは文献に記載されていた14×32、そしてその同じ模様を使ったものです。
でも、その数でないと作れないなんていうことはないはず。では、縦と横、どんな本数でも作れるのでしょうか。それとも、特定の決まった数でないと作れないのでしょうか。検討してみました。
まず、任意数の四角が縦に並んでいるとします。それを、上端・下両から3つごと、上下対称に塗りつぶしていくとします。中央部に最後に残るのは、下図の黄色の四角、5・4・3・2・1・0個のいずれかです。
この縦に並ぶ四角を、長桝網代編みの中央部分(下図の点線部分)に適用してみましょう。3つごと=3つ飛び網代編みです。立ち上げは四角の対角線で折りますので、中央となるラインも対角線に来ます。従って、余りが0,2,4にはなりません(上図の茶色)。中央に残るのは、1か3か5 です。
下図、左から余り3・余り1・余り5の例です。任意の数を任意の位置の3つ飛びで埋めた場合、いずれかになるということです。
このうち「長桝網代編み」と呼べるのは、余りが3となる左側のケースのみでしょう。いずれも1,3,5 で出来ているとはいえ、角以外は3つ飛びが基本でしょうから。
では次に、この長桝網代編みの中央部分の数は何で決まるのでしょうか。
下図のように、横の四角数の角の部分は、直角二等辺三角形で作られていますので、中央部分の高さは横の四角数の2倍、そこに立ち上げ位置の四角がプラス1です。
上図に従った式を作ると、
6で割った余りが0/2/4ということですが、1/3/5になることはないのでしょうか。
はい、×2で偶数、+1-3しても偶数ですから、余りも偶数です。
もうすこし式を整理すると、横の四角数と立ち上げ位置との関係は
先の文献『竹細工 増補改訂版』の長桝網代編みの作例は14と11でした。「横の四角数 を3で割った余りが2」となる数が該当します。たぶんこの数が、いちばん作り易いのでしょう。
※「横の四角数」としていますが、正確には横の四角数と縦の四角数のうち、小さい方の四角数です。縦の四角数の方が小さいときは、左右に反転した絵になります。