「Square45」タグアーカイブ

CraftBandSquare45で作成

2つ飛び網代編みの立ち上げ位置と底編み図生成

立ち上げ位置の検討で、3つ飛びを模様ラインに平行に折る場合、折り位置は「上の四角」「中の四角」「下の四角」のいずれかでした。2つ飛びではどうでしょう。

四角が2つでできた長方形ですから「上の四角」/「下の四角」、これと「右向き」/「左向き」を組み合わせると

  • 「右向き/上の四角」
  • 「右向き/下の四角」
  • 「左向き/上の四角」
  • 「左向き/下の四角」

となります。
3つ飛びの時と同様、左右については交換可能ということで、これを「上の四角」と「下の四角」として識別することにしましょう。

上の四角と下の四角

次は「角(かど)にかからない中央部分」を見てみます。3つ飛びの時と同様、模様ラインと平行になるように長方形の底を立ち上げた場合、長辺側つまり模様ラインと平行になる部分の中心の飛び数は、1もしくは3になります。

何故なら、全体が正方形ですから、斜めの中心線は四角の対角線を通ります。でも、四角2個の長方形(2つ飛び網代編み)には、対角線を通る中心線は存在しません。従って、中心部分が2つ飛びになることはあり得ない。また、中央ラインは四角の間には来ないのですから、4で割った余りから0と2を除外すると、1もしくは3になるのです。

下図のいずれかです。

中央部分の2択

八女市伝統工芸館」の「52 交色長桝二間網代」では、中央部分は3つ飛びになっていました。

2つ飛びの長桝網代については、文献
『図説 竹工芸 : 竹から工芸品まで』佐藤庄五郎、共立出版、1974
223ページ、図11.3 ますあじろの変化と四方あじろ・長ますあじろの一連の図の中に「(f)長ますあじろ(交色)」として掲載されています。こちらも、中央部分は3つ飛びになっています。ですので、竹編みの場合、中央部分を3にするのが正しい長桝二間網代と言えそうです。

かつて、斜め網代編みの底の組み方を検討した時、とりあえずのルールとして、

「上の四角」で立ち上げることを優先する。その結果、中央部分は1もしくは3になる。

としました。正しい長桝二間網代の場合は、そうではなく、

中央部分が3になることを優先する。その結果、立ち上げ位置は「上の四角」もしくは「下の四角」になる。

というルールだったのでした。


「角(かど)の三角形部分」はどうでしょう。3つ飛びの長桝網代編みでは長方形につながっていましたが、2つ飛びの場合は、対角線で反転した模様になっています。「八女市伝統工芸館」の「52 交色長桝二間網代」も『図説 竹工芸 : 竹から工芸品まで』ともにです。

短辺側の四角数を同じとし、長辺側の数を変えた図を並べてみました。短辺側、下図では左上と右下の直角二等辺三角形部分は、全て同じ編み方です。3つ飛びの時は短辺側は仮の絵でしたが、2つ飛びの場合は反転状態そのままの絵ですから、角(かど)の三角形部分については、短辺の四角数が同じであれば、長辺側の数によらず編み方は同じ、ということになります。

そして、短辺と長辺が同じになる、つまり横の四角数=縦の四角数・正方形になると、四方網代(風)になるのです。

長桝網代編みを正方形にしても四方網代編みにはならない・別の編み方である」というのが3つ飛びだったのですが、2つ飛びの場合は

長桝二間網代編みを正方形にすると四方網代編みになる・同じ編み方である

ということになるのです。何てことでしょう。。

ただしこれは、上図の一番右の編み方を何と呼ぶか、「長桝二間網代編み」なのか「四方網代編み」なのか、にかかってきます。見た感じ「長」より「四方」の方が自然に思えますが「四方二間網代編み」という言葉はあるのでしょうか。


そして、CraftBandSquare45による底の編み図の生成方法。3つ飛びの場合は、違う2種類の編み方、設定パターンも各3点あったため、早見表が便利でした。でも2つ飛びの場合は、編み方はひとつしかないし、設定パターンも次の2つしかありません。

  1. 垂直に=2 底に=0
  2. 垂直に=1 底に=1

1.の値が既定値になっていますので、そのままでも1/2の確率で生成できます。だめなら、2.の値に変えればよいだけ、なのです。

長桝二間網代のかご

名称長桝二間 網代 編み
長桝 網代 編み
名称(読み)ながますふたま あじろ あみ
ながます あじろ あみ
模様タイプ中心2点間は3つ飛び、各領域2つ飛び
単位
バンド幅
飛び数1,2,3
対称性半回転
備考

八女市伝統工芸館」の「竹編組見本」から「52 交色長桝二間網代」でボックスを作ってみました。

「竹編組見本」は、平らに編まれていますが、長桝網代編みと同様に長方形に立ち上げました。「長桝二間網代」という名前の通り、二間網代編みベースです。側面の二間網代編みがつながるように作りました。

底です。3本飛びの長桝網代編みとはちょっと異なる模様です。長方形がつながっていません。

長桝二間網代のかごの底

そして、3本飛びと比べると二重に編みにくいです。

  • 2本飛びは、3本飛びより単位となる長方形が短い
  • 底の短辺に、2本ごとに4本が交差する箇所がある

編み図です。

データです。

へリンボーン編みのかご、端の四角

ヘリンボーン編み「中の四角」パターンはわりと簡単に作れましたが、「端の四角」パターンはどうでしょうか。

端の四角」パターンは、角のところで、片側の辺は1、もう片側は2と3、とずれています。最初に作った「中の四角」パターンから、部分的にシフトする操作で作ることができました。1・3・5です。

中の四角→端の四角、という手順を踏まなくても、最初から3つ飛び網代編みを反転するだけで作れるのかもしれません。中央部で切り替わっている、というのがこのパターンのポイントのようです。

できたかごがこちら。

へリンボーン編みのかご、端の四角

ただこのヘリンボーン編み、端の四角に限らずですが、ラインが横になっている時より編むのに手間がかかります。横だと各側面ごとにまとめて編めたのが、縦だと角で交差する両面交互に編まないといけないのです。

底です。

へリンボーン編みのかごの底、端の四角

二つのかごを並べてみました。左が「中の四角」、右が「端の四角」です。

編み図です。

へリンボーン編みのかご、端の四角の編み図

同様に、長方形を作ってみました。中央部分に切り替えがありますので、「中の四角」パターンほど単純ではありませんが、同様に作ることができました。

長方形に応用

側面がつながる条件は「(縦の四角数+横の四角数) が3の倍数」です。縦の四角数と横の四角数、ともに3の倍数の場合は、そう難しくなく作れるようです。でも縦の四角数・横の四角数とも3の倍数でない場合は、もう少し手間がかかるでしょう。

データです。

ヘリンボーン編みのかご、中の四角

ヘリンボーン編み、既存の編み図があれば変更して作れることがわかりましたが、別のサイズで作れるものでしょうか。

作り易そうなところで、正方形、縦横の四角数15を作ってみました。「中の四角」のパターンです。

ヘリンボーン編みのかご、中の四角

底です。

ヘリンボーン編みのかごの底、中の四角

まず四方網代編みを生成し、底の線に対して模様ラインが垂直になるよう、各辺の4つの正方形を反転してみました。上下・左右が対称ですので、角が2・3になる「中の四角」パターンになりました。

要は、開き網代編み状態を作ればよいわけで、3つ飛びの網代編みで埋めてから半分を反転しても作れそうです。相対する辺で模様ラインの位置が同じになりましたので、片側をつなげました。1,3,5だけで作ることができました。

編み図です。

ヘリンボーン編みのかごの底、中の四角の編み図

編み図では、右上から左下にかけて、平行な模様ラインができています。この部分を増やすことで、長方形タイプにも適用できます。間をグレーにして作ってみました。ベースが同じパターンになっているのがわかるでしょうか。

長方形に応用

データです。


ヘリンボーン編みの手さげかご、端の四角と中の四角

文献はこちらです。

『改訂版 エコクラフト1巻き(5m)でちっちゃなかごを作りましょ』桑折智美、ブティック社、2017

54ページ~56ページに「へリンボーン編みの手さげかご」として作り方が載っており、底編みの写真も掲載されています。底の四角数は 12×6で、「端の四角」パターンで作られています。

改めて、このかごを作ってみました。そして、その底編み図を、四角ひとつ分回転するようにシフトして「中の四角」パターンの編み図を作り、こちらも作って比較してみました。

同サイズのはずが少し形が違うのは、編み方ではなく作り方が下手なせいです。。
側面の角のところ、左側は「端の四角」右側は「中の四角」になっているのがわかるでしょうか。

底を比べると、相対する面で、「端の四角」はラインが入れ替わるような形、「中の四角」はそのままつながるような形になっています。


ヘリンボーン編みの手さげかごの底、端の四角と中の四角

左側の「端の四角」パターンが文献に掲載されていたのは、中央縦に切り替え線が入り左右対称に近いからでしょうか。持ち手もつけやすいですし。

端の四角」パターンが「決まった編み方」なのかはわかりませんが、右側の「中の四角」パターンも、底がシンプルで作り易いのではないかと思います。ちなみに、立ち上げ後の側面の編みやすさはどちらも変わりませんでした。(ただし、側面交互に編む必要があるので、底に平行な場合より手間がかかります。)

編み図です。まず「端の四角」。文献掲載は内側から見た写真ですが、反転・回転して外側から見た図に変えています。

端の四角

中の四角」です。同じく、外側からの図です。

中の四角

データです。

3つ飛び網代編みの立ち上げ位置(縦ライン)

長桝網代編み四方網代編みは、3つ飛び網代編みを模様のラインに平行に折って立ち上げる場合の編み方でした。では、模様ラインに対して垂直に立ち上げるとどうなるでしょうか。

3つ飛び網代編み模様に対する立ち上げ位置は、次のいずれかになります。

ラインに沿ったタイプでは、立ち上げ線は上の四角・下の四角・中の四角のいずれかひとつ、すべて同じ位置を通っていました。でも、こちらのタイプは、上の四角・下の四角・中の四角、全種を順に通っていきますから、上中下では区別できません。中の四角を通る時長方形がどちらを向いているか、で識別することにしましょう。

立ち上げ線を水平に置いた時の、2パターンは次のようになります。
図の左を「左向き長方形」、右を「右向き長方形」とします。

左向き長方形と、右向き長方形

底の四角の位置に、1・2・3の数字を振っているように、3点の繰り返し模様です。ひも上下のデータ的には、上・下・下、もしくは下・上・上の 1-2 の繰り返しで、上下は、側面の角度が90度変わるごとに入れ替わります1-2 のうち1が「左向き長方形」もしくは「右向き長方形」を通る方です。

ラインに沿って立ち上げるタイプでは、側面の網代編みラインがつながるように、編み目を作りました。こちらのタイプも、まず各側面が底に対して垂直な網代編みラインになっているという前提で、同様にそのラインがつながるようにするには、

  • (縦の四角数+横の四角数) が、3の倍数であること
  • 底の周の4辺とも、同じ「左向き長方形」もしくは「右向き長方形」であること
  • 底の角、即ちある側面から隣の側面に変わる箇所では、角の両側が上図の1・2・3の連続的な繰り返しになっていること

でしょうか。具体例を作ってみました。

つながらない例

側面によって「左向き長方形」と「右向き長方形」が異なっています。

つながらない例

全て「右向き長方形」ですが、左の側面から右の側面にかけて、1・2・3になっていません。余分があります。

つながらない例

左の側面から右の側面にかけて、1・2・3になっていません。不足があります。

つながらない例

つながる例

全て「右向き長方形」で、底の上の角が左の側面から1・2、右の側面に回って3・1・2..と連続しています。

つながる例

全て「右向き長方形」で、底の上の角が左の側面から1、右の側面に回って2・3..と連続しています。

つながる例

側面の辺

つながる例として2パターンを作ってみました。「右向き長方形」ではなく「左向き長方形」であったり、2番目の例「2・3・1/2・3・1」が「1・2・3/1・2・3」であったり、といろいろありそうです。

でも、対称性を考えると、上の2パターンに大別できるのではないでしょうか。
そして、この2パターンは、立ち上げた側面の形状が異なります。

  • 立ち上げてできる側面、その位置に来る長方形の位置が、真ん中
  • 立ち上げてできる側面、その位置に来る長方形の位置が、端(右端もしくは左端)

底の角が、立ち上げてできる側面の辺になります。並べてみました。

1.側面が長方形の3つの四角のうち、真ん中になるパターン。

側面が中の四角

2.側面が長方形の3つの四角のうち、いずれかの端(真ん中以外)になるパターン。

側面が端の四角

模様ラインに平行に立ち上げる場合は、立ち上げ位置は、上の四角・中の四角・下の四角でした。90度回転して、この3種が側面に来ている状態ですので、左の四角・中の四角・右の四角になるわけですが、右と左に関しては交換可能としてまとめて「端の四角」、そして残る「中の四角」ということになります。


さて、ここまで、側面をつなげるために、底はどうあるべきかを見てきました。ではこのあるべき状態に対して、長桝網代編み四方網代編みのような決まった編み方というのはあるのでしょうか。そもそも、この編み方に、名前はついているのでしょうか。

以前、このパターンのかごを作ったことがあります。「へリンボーン編み」という名前がついていました。底がどう作られていたか、改めて見てみましょう。

「早見表」四方網代編みと長桝網代編み・3つ飛びの編み図生成

CraftBandSquare45 を使って、3つ飛びで、四方網代編みおよび長桝網代編みの底編み図を生成する手順ができました。

この時、いちばん迷うのは、[縦横の四角]の「垂直に」「底に」に何を設定するかでしょう。3回試行すればいいだけなのですが、わかっていれば1回で作れます。なので、早見表を作ってみました。

PDFファイルです。

四方網代編みと長桝網代編み

正方形は、長方形の特殊ケースです。つまり、長方形としての(角が直角などの)条件を全て満たしており、更に、縦と横が等しいという条件が加わったものです。

底を縦横に組んで45度に立ち上げるタイプのかごで使われる、四方網代編み長桝網代編み。正方形の時に使われるのは四方網代編み、長方形で使われるのは長桝網代編みです。

では、同様に、四方網代編みは長桝網代編みの特殊ケースなのでしょうか。

特徴をリストアップしてみましょう。

四方網代編み長桝網代編み
飛び数は、1,2,3飛び数は、1,3,5
3つ飛びの並びに不連続箇所がある3つ飛びは連続している

全く違っています。別の編み方、と言うべきでしょう。

では、正方形のかごを長桝網代編みで作れるでしょうか。横の四角数 < 縦の四角数 ではなく、横の四角数 = 縦の四角数 なら?

やってみました。編み図の生成手順通りの操作で、作ることができました。長桝網代編みは、正方形を含む長方形で使えるのです。

底は長方形模様です。

正方形の長桝網代編みの底

先に作った、四方網代編みと同サイズです。

同サイズの長桝網代編みと四方網代編み

長桝網代編みの方が汎用性があるのに、なぜわざわざ四方網代編みなのでしょうか。
四方網代編みは、3本ごとに4のひもが交差する箇所が出てきて、詰めにくいしすき間も空きやすい。長桝網代編みの方が圧倒的に編みやすいのに、です。

4方向に模様が揃っていてキレイだから?正方形らしいから?

こう考えてしまうのは、もしかして、私の作り方のせいでしょうか。
私の作り方はこうです。下手な素人ですから、完璧は求めません。

  1. プレビュー図を、等倍とA4縮小の2枚に印刷する
  2. 等倍の方を型紙にし、縦横のひも位置の両端に両面テープを貼る
  3. 縦ひもを、カットしながら全て貼り付ける
  4. 横ひもを、上から順にカットしながら、縮小印刷した編み図通りに差し込んでいく。終わった個所は編み図にマークする
  5. 差し込みにくければ随時両面テープをはがし、詰めにくければ霧吹きで柔らかくし、端や緩む箇所はボンドで軽く貼っていく
  6. 立ち上げラインを、水を含ませた筆で濡らす
  7. 立ち上げる。ボンドで固定した底の四隅は、各側面の真ん中で三角形になっているので、この三角形に沿って固定していく
  8. 側面の高さはほぼ揃っている。予定の高さでカットして縁ひもを貼る

ちなみに、3.のカットしながら、ですが、例えば4本幅で段階的に短くなっていく箇所だと、長さ+αくらいを割いておいて、次のように3本ずつ貼っていけばOK。

型紙に合わせていますので、作りながら固定します。後から、歪みを直したり直角に合わせるとかはしません。
そして、この手順だと、長桝網代編みも四方網代編みも作り方は同じです。
4.で、並んだ縦ひもに、横ひもを差していくとき、四方網代編みは3本ごとに無理が出てくるので、毎回柔らかくして詰めてボンドで留めるのですが、長桝網代編みには無理がない。霧吹き無しでできるし、手間がかからないのです。


先の文献『かごと器の技法がわかる 竹細工 増補改訂版』田中瑞波、メイツ出版、2023 では、長桝網代編みと四方網代編みは、章が違い、手順も異なります。長桝網代編みの手順はこんな感じです。

  1. ひごを縦に7本並べる。横1本目のひごは、縦のひご4,5,6本目を拾って入れる
  2. 横2本目のひごは、縦のひご1,5,6,7本目を拾って入れる
  3. ….
  4. 縦ひご24本、横ひご22本になるまで編み進める
  5. 右端に1本とばしの部分をつくる。180度回転し反対側の面にも同じ手順でひごを入れる
  6. ….
  7. 左から3本とびで拾い、右端1本残してひごを入れる。終えたら180度回す
  8. 先の手順を繰り返し、終えたら90度回す
  9. ….

難しいです。。長桝網代編みの編み目の上下46×46を読み取りたくて、最初は手順に従って拾っていったのです。46本の真ん中22×24、その左上7だと(13,22)~(20,22)などと換算しながら。でも、3回、回転が出てきた段階でギブアップしました。方向音痴の私には無理でした。

この手順で長桝網代編みを作れと言われたら、私には無理です。不可能です。四方網代編みの方がまだマシです。….だから、四方網代編み、なのでしょうか。

データです。

長桝網代底の編み図生成

CraftBandSquare45の機能を使って、四方網代編みの編み図を生成したように、長桝網代編みについても編み図を生成してみましょう。

条件に従うと、長辺に沿って3つ飛びで埋める組み合わせは以下でした。

  • 横の四角数 を3で割った余りが2の時は、A/a、数値は0-3/3-0 (下の四角)
  • 横の四角数 を3で割った余りがゼロの時、B/b、数値は2-1 (中の四角)
  • 横の四角数 を3で割った余りが1の時、C/c、数値は1-2 (上の四角)

上の四角・下の四角・中の四角を作る組み合わせについては、四方網代編みと同じです。

3つ飛びの長桝網代編みにするためには、先にみたように、線で切り替えられた模様を、連続した長方形の入れ子に書き換える、という手順が加わります。

また、上下による方向については、同様に最初から指定するか、もしくは[上下交換]で入れ替えることとします。


編み図生成手順

  1. CraftBandSquare45を起動する
  2. バンドの種類を選択し、基本のひも幅を指定する
  3. 目標寸法から[概算]、もしくは横の四角数・縦の四角数・高さの四角数を直接入力する。少ない方を横の四角数とする。
  4. 「縦横を展開する」チェックボックスをONにし、[ひも上下]タブを開く
  5. 「縦横の四角」に、横の四角数に応じた数をセットし[合わせる]ボタンをクリックする
  6. 底が生成されたら、不連続になっている4本のラインに沿って、2行/2列分の領域をそれぞれ選択し、DeleteでチェックをいったんOFFにする
  7. チェックOFFにした箇所の中を、長方形がつながるようにチェックONにする。
  8. 組み換えができたら、[プレビュー]タブをクリックすると、編み図を確認できる
  9. 縦ひも・横ひも位置の左右を変えたい場合は、[ひも上下]タブに戻って[上下交換]ボタンをクリックする

6.7.のBefore/Afterの例です。上ではいったんDeleteしていますが、そのまま「チェックONのセルの並びが1/3/5」「チェックOFFのセルの並びが1/3/5」になるよう、出来るだけ少なくON/OFFを入れ替える、という脳トレも楽しいです。

左がbefore /右がafter

動画内で参照している「早見表」はこちらにあります。

長桝網代編みの条件(2)

長桝網代編みの横の(小さい方の)四角数については、

  • その数で立ち上げ位置が(上の四角/中の四角/下の四角)が決まる
  • いずれの位置でも立ち上げ可能
  • 従って、横の四角数はいくつでもよい

ということがわかりました。


次は、縦の(大きい方の)四角数です。この数については、いくつでも良さそうです。

試しに、横の四角数を14としてすべて同じにし、縦の四角数を32~15の間で少しづつ変えた絵を作ってみました。

絵を並べてみると、それぞれの底が、2つの部分で出来ているのが読み取れるでしょうか。この2つの部分についてまとめたのが下の表です。

呼び名表示と形状編み目縦の四角数(32~15)との関係
角(かど)にかからない中央部分黒の点線(角丸四角)で囲まれた中、平行四辺形3つ飛び網代編みが平行に並ぶ高さは、すべて同じ
幅は、縦マイナス横
角(かど)の三角形部分黒の点線の外側、左側と右側、各二等辺三角形(上図は仮・次節で説明)すべて同じ

表の「縦の四角数(32~15)との関係」欄にまとめていますが、横の四角数が同じであれば「角にかからない中央部分」の高さ、および「角の三角形部分」の形状は、縦の四角数によらず同じです。縦の四角数の影響を受けるのは「角にかからない中央部分」の幅だけです。

「角にかからない中央部分」の幅は、縦の四角数から横の四角数をマイナスした数です。そしてこの幅の値は、いくつにでも作ることができます。ということは、縦の四角数も、いくつにでも作れる、ということです。横の四角数で決まる三角形部分とは無関係に。


そして最後に、残りの「角の三角形部分」を見てみましょう。上の図ではまだ仮の絵で、横の四角数によって決まる立ち上げ位置(上の四角/中の四角/下の四角)だけが合っている状態です。これを、「長桝網代編み」の

  • 飛び数は、1,3,5でできている
  • 3つ飛び模様は長方形に繋がっている
  • その長方形は入れ子になっている

のように作れるのでしょうか。

以下の図は、上図の右から2点目、14×20の図です。赤の中央線のところに不連続な並びがありますが、三角の内側(角側)2本分をグレーの帯でマスクしてみました(元がわかるよう少し透過性を持たせています)。

マスクされた状態で全体を眺めてみると、つながった、入れ子の長方形が見えてきませんか?それに、ベースが3で出来ていますから、1,3,5でつながりそう、ですよね。

つながりのちょっとした入れ替え、マッチ棒クイズみたいだと思いませんか?